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Proposition 0.1 (Exercise 1). Let G = (V,E) be a graph. There exists an ordering
{v1, . . . , vn} of the vertices so that the greedy algorithm (with this ordering) produces a min-
imal coloring.

Proof. Let k = χ(G) and let c : V → [k] be a proper coloring. Order the vertices so that
vi < vj whenever vi ∈ c−1(i) and vj ∈ c−1(j) and i < j. If c(vi) = c(vj), then the ordering of
vi, vj is arbitrary.

c−1(1) < c−1(2) < . . . < c−1(k)

We claim that applying the greedy algorithm with this ordering produces a minimal coloring.
When the algorithm colors the vertices in c−1(i), it may assign them a color less than i, but
it will not assign them a color greater than i, since c is a proper coloring. Thus the greedy
algorithm will not assign color greater than k to any vertex in c−1(i) for any i, hence the
resulting coloring is minimal.

Proposition 0.2 (Exercise 2b). Let k ≥ 3. Then there exists a graph Gk with χ(Gk) = k
but Gk does not contain Kk as a subgraph.

Proof. Let G3 = C5 be the cycle graph with 5 vertices. Clearly χ(G3) = 3, and G3 does not
contain a 3-cycle so it contains to K3. Now inductively define Gk+1 = Gk ∪ {v}. We also
add an edge from v to each other vertex. By induction hypothesis, χ(Gk) = k, and since v
must be a different color from each other vertex, χ(Gk+1) = k + 1.

We claim that Gk does not contain a Kk subgraph. Note that Gk has 5 vertices of degree
k−1 (the originals from G3) and k−3 vertices of degree k+1. Thus any subset of k vertices
would include at least 3 vertices from the original G3. However, no three vertices of G3 form
a three-cycle, so any k vertex subset of Gk is missing at least one edge.

Proposition 0.3 (Exercise 5a). Let G be a graph such that LG is planar. Then every vertex
of G has either deg x ≤ 3, or deg x = 4 and x is a cut-vertex of G.

Proof. First, we show that deg x ≤ 5 for x ∈ V (G). If x ∈ V (G) has degree 5 or more, then
LG has a K5 subgraph. The picture on the left is in G, and the picture on the right is the
corresponding subgraph in LG.
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Suppose deg x = 4 and G \ x is connected. Let {v1, v2, v3, v4} = Γ(x). Then there exists
some other vertex y ∈ G \ x, and there are paths v1P1y, v2P2y, v3P3y, v4P4y in G \ v. We
depict the situation in G below.

x

v1 v2 v3 v4

y

e2 e3 e4

e1

P1 P2
P3

P4

Choose some edge ey that has y as an endpoint. Then the path Pi in G corresponds to a

path P̃i in LG form ei to ey. The picture in LG corresponding to the relevant part of G is
depicted below.

e1 e2

ey

e3 e4

P̃1

P̃2
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P̃4

Note that the paths P̃i, P̃j may overlap before reaching ey, so this is not necessarily a TK5

subgraph. However, even if they overlap, it is an IK5 subgraph of LG, which contradicts
LG being planar. Thus if deg x = 4, then x is a cut-vertex of G.

Note: The next lemma is rather technical. The basic idea is that given two graphs G1, G2

with proper 4-edge-colorings and planar line graphs, we can “stitch” them together with a
cutvertex of degree 4 and modify the edge colorings to get a bigger graph with a proper
4-edge-coloring.
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Lemma 0.4 (Exercise 5b). Let G = (V,E) be a graph with ∆(G) ≤ 4 so that every vertex of
degree 4 is a cutvertex. Let x ∈ V have degree 4, and suppose that G = G1tG2 where G1, G2

are disconnected by the cutvertex x, and χ′(G1) ≤ 4 and χ′(G2) ≤ 4. Then χ′(G) ≤ 4.

Proof. Let Γ(x) = {v1, v2, v3, v4}. We consider two cases: (1) v1, v2 ∈ G1 and v3, v4 ∈ G2, and
(2) v1, v2, v3 ∈ G1 and v4 ∈ G2. (This includes all possible cases, up to relabeling vertices.)

We begin with case (1), which we partially depict as below. The labellings are names,
not colors, and the unlabeled vertices lie in G1. Note that v1, v2 may have fewer edges into
G1 than depicted, but not more, because ∆(G) ≤ 4.

x
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We have a symmetric picture for the connection between x and G2. By assumption, we have
a proper edge coloring c : V (G1) → [4]. If we can extend c to a proper edge coloring of
G \ G2, then by symmetry we can extend the coloring of G2 to a proper edge coloring of
G \G1. Then after permuting the labels of the edge colors for G \G1, we can have all four
edges of x distinct, and we have a proper coloring of G. Thus to finish case (1), it suffices
to extend c to a proper edge coloring of G \G2.

Let c(vi) denote a color missing at vertex vi. If c(v1) 6= c(v2), then we can extend c to a
proper edge coloring of G \ G2 by setting c(xvi) = c(vi) for i = 1, 2. In particular, if v1, v2
do not have degree 4 in G, then we can always do this, so we may henceforth assume that
degG v1 = degG v2 = 4.

The only remaining obstruction to extending c to G\G2 is if c(v1) = c(v2). Then consider
a “Kempe chain” of edges starting at v1, using the alternating colors c(e1), c(v1). If we can
interchange the colors along this chain, then we’ve reduced to a previous situation where
c(v1) 6= c(v2). The only obstruction to this interchange is if the path reaches v2.

x

v1 v2

• • • • • •

• • • •

c(e1) c(e1)

c(v1)

c(e1) c(v1) c(e1)

c(v1)

But if such a path exists, then v1 is a vertex in G of degree 4 which is not a cutvertex, which
is not allowed by our hypotheses. Thus no such path exists, and we may free up the color
c(e1) at v1, as desired. The proves the lemma in case (1).

Now we consider case (2). We partially depict G \ G2 as below, where the unlabelled
vertices lie in G1.
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By hypothesis, we have a proper edge coloring c : V (G1) → [4]. As in case (1), if c(v1) =
c(v2), then we extend c to the edges xv1 and xv2 by setting c(xvi) = c(vi) for i = 1, 2. If
they share all colors, then we may perform a Kempe chain switch so that c(v1) 6= c(v2), and
then extend to xv1, xv2. As in case (1), the Kempe chain cannot reach v2, so this is always
possible. Now we may do the same process to ensure that c(v3) differs from both c(v1) and
c(v2), and complete our extension by setting c(xv3) = c(v3).

Finally, we consider the edge xv4. By hypothesis we have a proper edge coloring of G2.
We know that degG v4 ≤ 4, so there is some color missing from v4. We simply relabel the
colors for G2 so that the missing color at v4 is the color missing at x. This gives a proper
edge coloring of all of G. This proves the lemma in case (2).

Proposition 0.5 (Exercise 5b). Let G be a graph such that LG is planar. Then χ(LG) ≤ 4.

Proof. By part (a), ∆(G) ≤ 4 and every vertex of degree 4 in G is a cutvertex. Let SG =
{v ∈ V (G) : deg v = 4}. We induct on the size of S. For the base case, if S = ∅, then
∆(G) ≤ 3 and so by Vizing’s Theorem, χ(LG) = χ′(G) ≤ 3 + 1 = 4, and we are done.

The inductive step is essentially contained in Lemma 0.4. Let x ∈ SG, and write G \x as
G1tG2 where G1, G2 are each unions of connected components of G\x. Then SG1 , SG2 ⊂ SG,
in particular, |SG1|, |SG2| ≤ |SG|, so by inductive hypothesis, χ′(G1), χ

′(G2) ≤ 4. Then by
the lemma, χ′(G) ≤ 4, which implies χ(LG) ≤ 4, and our induction is complete.
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